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Mechanics at different scalesMechanics at different scales

● Organisms – tissues – cells

● Form reflects function

● Complex system ?



Resolution of the modelResolution of the model

● Type of processes studied

● Time scales

● Tissue – medical simulation

● Cellular – signaling

● Subcellular – mRNA polarization, intracellular transport

● Multiscale models



Mechanics in morphogenesisMechanics in morphogenesis

● Creation of new organs – change of shape – large 

deformations

● Cellular scale

● Cell growth and division

● Conditions change in the cell

● Regulation of mechanical properties

● Mechanotransduction 



Plant cellsPlant cells

● Rigid walls

● Turgor pressure

● Transport

● Simplastic growth

● Anisotropy – cellulose microfibrils

● Cortical microtubules



Animal cellsAnimal cells

● Cell membrane – no cell wall

● Can move with respect to each other

● Cytoskeleton – scaffold of a cell

● Adhesion

● Specialized junctions



Cellular modelsCellular models

● Mass spring models

● Vertex dynamics

● Cellular Potts

● FEM models

● Particle models

● Tensegrity



Mass spring modelsMass spring models

● Cells as point masses or...

● Plant walls as the springs

● Easy cell growth and division



Vertex dynamics modelsVertex dynamics models

● Vertices → Potential function of cells and walls

● Solve equations of motion for all vertices   

m r̈ i ṙ i=−∇ iU

Honda et.al 2008
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Cellular potts modelsCellular potts models

● Lattice based

● Monte Carlo updates

● Hamiltonian defines probabilities

P si , j s ' i , j =exp {−H /kT } CompuCell 3D



Tensegrity modelsTensegrity models

● Aims to reproduce internal structure

● Different response of elements

Ladjal et.al 2008



Finite Element MethodFinite Element Method

● Boundary value problem on complicated geometries

● Variational formulation

● Division of domain to simple elements

),,( zyx=x

),,( ςηξ=ξ



FEM for biological tissuesFEM for biological tissues

● Anisotrophy

● Growth, divisions

● Viscoelasticity
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Microtubules – stressMicrotubules – stress

● Microtubules direction correlates with max principal 

stress direction



Microtubules – stressMicrotubules – stress

● Cell ablation induces changes in microtuble 

arangement



Auxin transportAuxin transport
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Auxin transportAuxin transport

● PIN1 correlates with microtubules
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Auxin transportAuxin transport

● No direct connection between PIN1 and microtubules
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Auxin transportAuxin transport

● Hypothesis: stress regulates both microtubules and 

auxin transport
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Auxin transportAuxin transport
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Auxin transportAuxin transport

● Spontaneus pattern formation



Auxin transportAuxin transport

● Ablation

● PIN1 polarizes away from ablated cell 



Mechanistic model of embryogenesisMechanistic model of embryogenesis

Laboratoire de Biologie de la Reproduction; Lausanne



Mechanistic model of embryogenesisMechanistic model of embryogenesis

● Elastic response lumped to 

principal axes

● Elastic, adhesion and drag forces

● Each cell has a set of internal data 

(concentration of  proteins, cell     

cycle length, etc) 
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Trophectoderm formationTrophectoderm formation

● Cdx2 – Oct4 antagonism

● Polarity based model

● Cdx2 mRNA divides asymmetricaly

● Asymmetric division more probable 

for low Cdx2 cell

● Inside-outside separation of Cdx2 

levels



Endoderm formationEndoderm formation

● Gata6 – Nanog expression specified early

● Spacial sorting



Differential adhesionDifferential adhesion

● Differences in adhesion strength lead to spacial 

sorting

A C
S 1S 2

2
B  S 1CS 2

C  CS 1, CS 2

D C=0

C  – cross-adhesion
S

1
 – white “species” adhesion

S
2
 – black “species” adhesion



Endoderm formationEndoderm formation

● Differential adhesion + directional basal movement



SummarySummary

● Can't escape mechanics on cellular level

● Integral part of morphogenesis

● Connected to molecular integrations
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